Auxiliary Polynomials for Some Problems regarding Mahler’s Measure

نویسندگان

  • ARTŪRAS DUBICKAS
  • MICHAEL J. MOSSINGHOFF
چکیده

We describe an iterative method of constructing some favorable auxiliary polynomials used to obtain lower bounds in some problems of algebraic number theory. With this method we improve a lower bound on Mahler’s measure of a polynomial with no cyclotomic factors whose coefficients are all congruent to 1 modulo m for some integer m ≥ 2, raise a lower bound in the problem of Schinzel and Zassenhaus on the largest root of such a polynomial, and improve a lower bound on the absolute Weil height of an algebraic unit whose minimal polynomial splits completely over a p-adic field.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Barker Sequences and Flat Polynomials

A Barker sequence is a finite sequence of integers, each ±1, whose aperiodic autocorrelations are all as small as possible. It is widely conjectured that only finitely many Barker sequences exist. We describe connections between Barker sequences and several problems in analysis regarding the existence of polynomials with ±1 coefficients that remain flat over the unit circle according to some cr...

متن کامل

AVERAGE MAHLER’S MEASURE AND Lp NORMS OF UNIMODULAR POLYNOMIALS

A polynomial f ∈ C[z] is unimodular if all its coefficients have unit modulus. Let Un denote the set of unimodular polynomials of degree n−1, and let Un denote the subset of reciprocal unimodular polynomials, which have the property that f(z) = ωzn−1f(1/z) for some complex number ω with |ω| = 1. We study the geometric and arithmetic mean values of both the normalized Mahler’s measure M(f)/ √ n ...

متن کامل

AVERAGE MAHLER’S MEASURE AND Lp NORMS OF LITTLEWOOD POLYNOMIALS

Littlewood polynomials are polynomials with each of their coefficients in the set {−1, 1}. We compute asymptotic formulas for the arithmetic mean values of the Mahler’s measure and the Lp norms of Littlewood polynomials of degree n − 1. We show that the arithmetic means of the Mahler’s measure and the Lp norms of Littlewood polynomials of degree n − 1 are asymptotically e−γ/2 √ n and Γ(1+ p/2)1...

متن کامل

An Areal Analog of Mahler’s Measure

We consider a version of height on polynomial spaces defined by the integral over the normalized area measure on the unit disk. This natural analog of Mahler’s measure arises in connection with extremal problems for Bergman spaces. It inherits many nice properties such as the multiplicative one. However, this height is a lower bound for Mahler’s measure, and it can be substantially lower. We di...

متن کامل

The distribution of Mahler's measures of reciprocal polynomials

We study the distribution of Mahler’s measures of reciprocal polynomials with complex coefficients and bounded even degree. We discover that the distribution function associated to Mahler’s measure restricted to monic reciprocal polynomials is a reciprocal (or anti-reciprocal) Laurent polynomial on [1,∞) and identically zero on [0, 1). Moreover, the coefficients of this Laurent polynomial are r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004